MSA-2111

6V Fixed Gain Amplifier, for 900 MHz Applications

Description

Lifecycle status: Active

Features

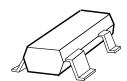
The MSA-21 is a 6V cascadable 50ohm gain block targeted for narrow and wide bandwidth IF amplifier applications at 900MHz. It is offered in the SOT-143 surface mount plastic package. Bias: 6V, 29mA; f3dB = 0.5GHz; G = 16dB; NF = 3.3dB; P1dB = 10dBm; IP3i = 4dBm all at 900MHz.

MSA-2111

Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

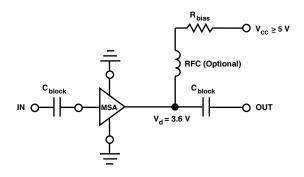

The MSA-2111 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Features

- Cascadable 50 Ω Gain Block
- Medium Power: 10 dBm at 900 MHz
- High Gain: 16.5 dB Typical at 900 MHz
- Low Noise Figure:3.3 dB Typical at 900 MHz
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

SOT-143 Package


Pin Connections and Package Marking

Notes

Top View. Package Marking provides orientation and identification.
"x" is the date code.

Typical Biasing Configuration

MSA-2111 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	40 mA	
Power Dissipation ^[2,3]	125 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	−65°C to 150°C	

Thermal Resistance ^[2] :		
$\theta_{jc} = 505^{\circ}\text{C/W}$		

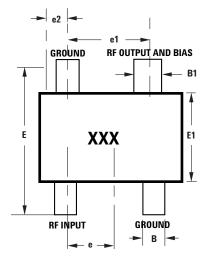
Notes

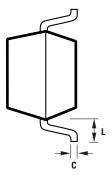
- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 2.0 mW/°C for $T_C > 85$ °C.

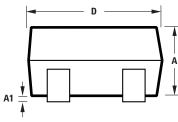
Electrical Specifications $^{[1]}$, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I	$_{\rm d}$ = 29 mA, $Z_{\rm 0}$ = 50 Ω	Units	Min.	Тур.	Max.
G _P	Power Gain (S ₂₁ ²)	f = 900 MHz	dB	16.0	17.5	
ΔG_P	Gain Flatness	f = 0.1 to 0.3 GHz	dB		±0.5	
f _{3 dB}	3 dB Bandwidth		GHz		0.5	
VCMD	Input VSWR	f = 0.1 to 2.5 GHz			1.8:1	
VSWR	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50 Ω Noise Figure	f = 900 MHz	dB		3.3	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 900 MHz	dBm		10	
IP ₃	Third Order Intercept Point	f = 900 MHz	dBm		20	
t _D	Group Delay	f = 900 MHz	psec		158	
V _d	Device Voltage		V	2.9	3.6	4.3
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:


Ordering Information


Part Numbers	No. of Devices	Comments
MSA-2111-BLK	100	Bulk
MSA-2111-BLKG	100	Bulk
MSA-2111-TR1	3000	7" Reel
MSA-2111-TR1G	3000	7" Reel
MSA-2111-TR2	10000	13" Reel
MSA-2111-TR2G	10000	13" Reel


Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 12 to 35 mA. Typical gain performance as a function of current is on the following page.

SOT-143 Package Dimensions

Notes: XXX-package marking Drawings are not to scale

	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
Α	0.79	1.097	
A1	0.013	0.10	
В	0.36	0.54	
B1	0.76	0.92	
C	0.086	0.152	
D	2.80	3.06	
E1	1.20	1.40	
е	0.89	1.02	
e1	1.78	2.04	
e2	0.45	0.60	
E	2.10	2.65	
L	0.45	0.69	

